An intramolecular interaction between the FHA domain and a coiled coil negatively regulates the kinesin motor KIF1A.

نویسندگان

  • Jae-Ran Lee
  • Hyewon Shin
  • Jeonghoon Choi
  • Jaewon Ko
  • Seho Kim
  • Hyun Woo Lee
  • Karam Kim
  • Seong-Hwan Rho
  • Jun Hyuck Lee
  • Hye-Eun Song
  • Soo Hyun Eom
  • Eunjoon Kim
چکیده

Motor proteins not actively involved in transporting cargoes should remain inactive at sites of cargo loading to save energy and remain available for loading. KIF1A/Unc104 is a monomeric kinesin known to dimerize into a processive motor at high protein concentrations. However, the molecular mechanisms underlying monomer stabilization and monomer-to-dimer transition are not well understood. Here, we report an intramolecular interaction in KIF1A between the forkhead-associated (FHA) domain and a coiled-coil domain (CC2) immediately following the FHA domain. Disrupting this interaction by point mutations in the FHA or CC2 domains leads to a dramatic accumulation of KIF1A in the periphery of living cultured neurons and an enhancement of the microtubule (MT) binding and self-multimerization of KIF1A. In addition, point mutations causing rigidity in the predicted flexible hinge disrupt the intramolecular FHA-CC2 interaction and increase MT binding and peripheral accumulation of KIF1A. These results suggest that the intramolecular FHA-CC2 interaction negatively regulates KIF1A activity by inhibiting MT binding and dimerization of KIF1A, and point to a novel role of the FHA domain in the regulation of kinesin motors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distinct conformations of the kinesin Unc104 neck regulate a monomer to dimer motor transition

Caenhorhabditis elegans Unc104 kinesin transports synaptic vesicles at rapid velocities. Unc104 is primarily monomeric in solution, but recent motility studies suggest that it may dimerize when concentrated on membranes. Using cryo-electron microscopy, we observe two conformations of microtubule-bound Unc104: a monomeric state in which the two neck helices form an intramolecular, parallel coile...

متن کامل

Structural basis for misregulation of kinesin KIF21A autoinhibition by CFEOM1 disease mutations

Tight regulation of kinesin activity is crucial and malfunction is linked to neurological diseases. Point mutations in the KIF21A gene cause congenital fibrosis of the extraocular muscles type 1 (CFEOM1) by disrupting the autoinhibitory interaction between the motor domain and a regulatory region in the stalk. However, the molecular mechanism underlying the misregulation of KIF21A activity in C...

متن کامل

Engineering the Processive Run Length of the Kinesin Motor

Conventional kinesin is a highly processive molecular motor that takes several hundred steps per encounter with a microtubule. Processive motility is believed to result from the coordinated, hand-over-hand motion of the two heads of the kinesin dimer, but the specific factors that determine kinesin's run length (distance traveled per microtubule encounter) are not known. Here, we show that the ...

متن کامل

Kinesin Processivity

Conventional kinesin is a highly processive motor that can take Ͼ 100 steps along a microtubule before dissociating. Various lines of evidence have led to a model of hand over hand processive motion, in which the trailing head detaches and rebinds to the next open tubulin dimer site on the same protofilament, leading to an 8-nm movement of supports the hand over hand mechanism. Processivity is ...

متن کامل

Kinesin-73 Is a Processive Motor That Localizes to Rab5-containing Organelles*

Drosophila Kinesin-73 (Khc-73), which plays a role in mitotic spindle polarity in neuroblasts, is a metazoan-specific member of the Kinesin-3 family of motors, which includes mammalian KIF1A and Caenorhabditis elegans Unc-104. The mechanism of Kinesin-3 motors has been controversial because some studies have reported that they transport cargo as monomers whereas other studies have suggested a d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The EMBO journal

دوره 23 7  شماره 

صفحات  -

تاریخ انتشار 2004